- 1. Spectral Densities
- Basic Properties of \(f(\cdot)\)
- Definition of Spectral Density
- Spectral Representation of the ACVF
- 2. Periodogram
- Fourier Frequencies
- A Basis for \(\mathbb{C}^n\)
- Discrete Fourier Transform
- Estimation of Spectral Density
- 3. Time-Invariant Linear Filters
- 4. Spectral Density of an ARMA Process
- 5. Linear Combination of Sinusoids
1. Spectral Densities
- Suppose that \(\{X_t\}\) is a zero-mean stationary time series with ACVF \(\gamma(\cdot)\).
-
To define spectral density, we first assume that \(\gamma(\cdot)\)
satisfies \(\sum_{h = - \infty}^{\infty} \mid \gamma(h) \mid < \infty\).
Summability of \(\gamma(\cdot)\); holds true for ARMA - In this case, the spectral density of \(\{X_t\}\) is defined as \[ f(\lambda) = \frac{1}{2 \pi} \sum_{h = - \infty}^{\infty} e^{-i h \lambda} \gamma(h) \] for \(-\infty < \lambda < \infty\).
- It follows that \(f(\lambda) = \frac{1}{2 \pi} \sum_{h=-\infty}^\infty \cos(h\lambda) \gamma(h)\).
Examples
-
White noise, \(\{Z_t\} \sim WN(0, \sigma^2)\)
\(\gamma(h) = \begin{cases} \sigma^2 & h=0 \\ 0 & \text{otherwise}\end{cases}\)
So, \(f(\lambda) = \frac{1}{2 \pi} \sum_{-\infty}^\infty e^{-ih\lambda} \gamma(h) = \frac{1}{2 \pi} e^0 \cdot \gamma(0) = \frac{\sigma^2}{2\pi}\) -
AR(1): \(X_t - \phi X_{t-1} = Z_t, \mid \phi \mid < 1\) & \(\{Z_t\} \sim WN(0, \sigma^2)\)
\(\gamma(h) = \frac{\sigma^2 \phi^{\mid h \mid}}{1 - \phi^2}\)
So, \( f(\lambda) = \frac{1}{2\pi} \sum_{-\infty}^\infty e^{-ih\lambda} \gamma(h) = \frac{\sigma^2}{2 \pi (1 - \phi^2)} [1 + \sum_{h=1}^\infty \phi^h e^{-ih\lambda} + \sum_{l=1}^{\infty} \phi^{l} e^{il\lambda}] = \frac{\sigma^2}{2 \pi (1 - \phi^2)} [1 + \frac{\phi e^{-i\lambda}}{1 - \phi e^{-i \lambda}} + \frac{\phi e^{i\lambda}}{1 - \phi e^{i \lambda}}] = \frac{\sigma^2}{2 \pi} \frac{1}{1 - 2 \phi \cos(\lambda) + \phi^2} \) for \(\lambda \in (-\infty, \infty)\).
numerical example in R
(see photo - 15:43 Oct 22) - MA(1): \(X_t = Z_t + \theta Z_{t-1}, \{Z_t\} \sim WN(0, \sigma^2)\)
Basic Properties of \(f(\cdot)\)
-
\(f(\lambda + 2 \pi) = f(\lambda)\)
- So, it suffices to study \(f(\cdot)\) on the interval \((-\pi, \pi]\).
-
\(f(\lambda) = f(-\lambda)\)
- So, it suffices to study \(f(\cdot)\) on the interval \([0, \pi]\).
- \(f(\lambda) \ge 0\) for all \(\lambda \in (-\pi, \pi]\)
-
\(\gamma(k) = \int_{-\pi}^{\pi} e^{i k \pi} f(\lambda) d \lambda = \int_{-\pi}^{\pi} \cos(k\lambda) f(\lambda) d \lambda \)
- \(\gamma\) determines \(f\) and vice versa.
Definition of Spectral Density
A function \(f\) is the spectral density of a stationary time series \(\{X_t\}\)
with ACVF \(\gamma(\cdot)\) if
- \(f(\lambda) \ge 0\) for all \(\lambda \in (-\pi, \pi]\), and
- \(\gamma(h) = \int_{-\pi}^{\pi} e^{i h \lambda} f(\lambda) d \lambda\) for all integers \(h\).
Proposition 4.1.1
A real-valued function \(f\) on \((- \pi, \pi]\) is the spectral density
of a real-valued stationary time series if and only if
- \(f(\lambda) = f(-\lambda)\)
- \(f(\lambda) \ge 0\)
- \(\int_{-\pi}^{\pi} f(\lambda) d\lambda < \infty \)
Corollary 4.1.1
An absolutely summable function \(\gamma(\cdot)\) is the ACVF of a
stationary time series if and only if
- \(\gamma(h) = \gamma(-h)\)
- \(f(\lambda) = \frac{1}{2 \pi} \sum_{h = -\infty}^\infty e^{-ih\lambda} \gamma(h) \ge 0\) for all \(\lambda \in (-\pi, \pi]\).
Example
Show that the function defined by
\( \kappa(h) = \begin{cases} 1 & h = 0 \\ \rho & h = \pm 1\\ 0 & \text{otherwise} \end{cases} \)
is the ACVF of a stationary time series if and only if \(\mid \rho \mid \leq 1/2\).
\( \kappa(h) = \begin{cases} 1 & h = 0 \\ \rho & h = \pm 1\\ 0 & \text{otherwise} \end{cases} \)
is the ACVF of a stationary time series if and only if \(\mid \rho \mid \leq 1/2\).
Spectral Representation of the ACVF
- A function \(\gamma(\cdot)\) is the ACVF of a stationary time series if and only if there exists a right-continuous, nondecreasing, bounded function \(F\) on \([-\pi, \pi]\) with \(F(-\pi) = 0\) such that \[ \gamma(h) = \int_{-\pi}^\pi e^{ih\lambda}dF(\lambda) \] for all integers \(h\).
- \(F\) is called the spectral distribution function of \(\gamma(\cdot)\).
Remarks
- Every stationary process has a spectral distribution function \(F\), and \(\gamma(h) = \int_{-\pi}^\pi e^{ih\lambda} dF(\lambda)\).
- But not every stationary process has a spectral density \(f\).
-
If the spectral density \(f\) exisits, then
- \(F(\lambda) = \int_{-\pi}^\pi f(\omega) d\omega\)
- \(\gamma(h) = \int_{-\pi}^\pi e^{ih\lambda}f(\lambda)d\lambda\)
- Time series is said to have a continuous spectrum.
Example
\(X_t = A \cos(\omega t) + B \sin(\omega t)\) where \(\omega \in (0, \pi)\)
and \(A\) & \(B\) are uncorrelated random variables with mean 0 & variance \(\sigma^2\).
Preliminaires:
Preliminaires:
-
Riemann-Stieltjes integral
\( \int_I g(x) d F(x) = \lim_{\max_i(x_i - x_{i-1})\rightarrow 0} \sum_{i=1}^N g(\xi_i)[F(x_i) - F(x_{i-1})] \)
A result: if \(F(x) = \sum_{i=1}^N a_i \mathbb{1}_{\{x \ge x_i\}}\), then \(\int_I g(x) dF(x) = \sum_{i=1}^N g(x_i)a_i\) -
Stochastic integral / Itô calculus
(see Appendix D.2.4)